Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Few-Shot Adaptation for Multimedia Semantic Indexing (1807.07203v1)

Published 19 Jul 2018 in cs.MM and cs.CV

Abstract: We propose a few-shot adaptation framework, which bridges zero-shot learning and supervised many-shot learning, for semantic indexing of image and video data. Few-shot adaptation provides robust parameter estimation with few training examples, by optimizing the parameters of zero-shot learning and supervised many-shot learning simultaneously. In this method, first we build a zero-shot detector, and then update it by using the few examples. Our experiments show the effectiveness of the proposed framework on three datasets: TRECVID Semantic Indexing 2010, 2014, and ImageNET. On the ImageNET dataset, we show that our method outperforms recent few-shot learning methods. On the TRECVID 2014 dataset, we achieve 15.19% and 35.98% in Mean Average Precision under the zero-shot condition and the supervised condition, respectively. To the best of our knowledge, these are the best results on this dataset.

Citations (6)

Summary

We haven't generated a summary for this paper yet.