Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Prognostics Estimations with Dynamic States (1807.06093v3)

Published 16 Jul 2018 in cs.LG and stat.ML

Abstract: The health state assessment and remaining useful life (RUL) estimation play very important roles in prognostics and health management (PHM), owing to their abilities to reduce the maintenance and improve the safety of machines or equipment. However, they generally suffer from this problem of lacking prior knowledge to pre-define the exact failure thresholds for a machinery operating in a dynamic environment with a high level of uncertainty. In this case, dynamic thresholds depicted by the discrete states is a very attractive way to estimate the RUL of a dynamic machinery. Currently, there are only very few works considering the dynamic thresholds, and these studies adopted different algorithms to determine the discrete states and predict the continuous states separately, which largely increases the complexity of the learning process. In this paper, we propose a novel prognostics approach for RUL estimation of aero-engines with self-joint prediction of continuous and discrete states, wherein the prediction of continuous and discrete states are conducted simultaneously and dynamically within one learning framework.

Summary

We haven't generated a summary for this paper yet.