Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scene Learning: Deep Convolutional Networks For Wind Power Prediction by Embedding Turbines into Grid Space (1807.05666v2)

Published 16 Jul 2018 in cs.LG and stat.ML

Abstract: Wind power prediction is of vital importance in wind power utilization. There have been a lot of researches based on the time series of the wind power or speed, but In fact, these time series cannot express the temporal and spatial changes of wind, which fundamentally hinders the advance of wind power prediction. In this paper, a new kind of feature that can describe the process of temporal and spatial variation is proposed, namely, Spatio-Temporal Features. We first map the data collected at each moment from the wind turbine to the plane to form the state map, namely, the scene, according to the relative positions. The scene time series over a period of time is a multi-channel image, i.e. the Spatio-Temporal Features. Based on the Spatio-Temporal Features, the deep convolutional network is applied to predict the wind power, achieving a far better accuracy than the existing methods. Compared with the starge-of-the-art method, the mean-square error (MSE) in our method is reduced by 49.83%, and the average time cost for training models can be shortened by a factor of more than 150.

Citations (61)

Summary

We haven't generated a summary for this paper yet.