Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Token Sliding on Split Graphs (1807.05322v2)

Published 14 Jul 2018 in cs.DS

Abstract: We consider the complexity of the Independent Set Reconfiguration problem under the Token Sliding rule. In this problem we are given two independent sets of a graph and are asked if we can transform one to the other by repeatedly exchanging a vertex that is currently in the set with one of its neighbors, while maintaining the set independent. Our main result is to show that this problem is PSPACE-complete on split graphs (and hence also on chordal graphs), thus resolving an open problem in this area. We then go on to consider the $c$-Colorable Reconfiguration problem under the same rule, where the constraint is now to maintain the set $c$-colorable at all times. As one may expect, a simple modification of our reduction shows that this more general problem is PSPACE-complete for all fixed $c\ge 1$ on chordal graphs. Somewhat surprisingly, we show that the same cannot be said for split graphs: we give a polynomial time ($n{O(c)}$) algorithm for all fixed values of $c$, except $c=1$, for which the problem is PSPACE-complete. We complement our algorithm with a lower bound showing that $c$-Colorable Reconfiguration is W[2]-hard on split graphs parameterized by $c$ and the length of the solution, as well as a tight ETH-based lower bound for both parameters.

Citations (30)

Summary

We haven't generated a summary for this paper yet.