2000 character limit reached
The relative canonical resolution: Macaulay2-package, experiments and conjectures (1807.05121v1)
Published 13 Jul 2018 in math.AG
Abstract: This short note provides a quick introduction to relative canonical resolutions of curves on rational normal scrolls. We present our Macaulay2-package which computes the relative canonical resolution associated to a curve and a pencil of divisors. Most of our experimental data can be found on a dedicated webpage. We end with a list of conjectural shapes of relative canonical resolutions. In particular, for curves of genus $g=n\cdot k +1$ and pencils of degree $k$ for $n\ge 1$, we conjecture that the syzygy divisors on the Hurwitz space $\mathscr{H}_{g,k}$ constructed by Deopurkar and Patel all have the same support.
Collections
Sign up for free to add this paper to one or more collections.