Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
88 tokens/sec
Gemini 2.5 Pro Premium
45 tokens/sec
GPT-5 Medium
31 tokens/sec
GPT-5 High Premium
39 tokens/sec
GPT-4o
91 tokens/sec
DeepSeek R1 via Azure Premium
91 tokens/sec
GPT OSS 120B via Groq Premium
460 tokens/sec
Kimi K2 via Groq Premium
219 tokens/sec
2000 character limit reached

The relative canonical resolution: Macaulay2-package, experiments and conjectures (1807.05121v1)

Published 13 Jul 2018 in math.AG

Abstract: This short note provides a quick introduction to relative canonical resolutions of curves on rational normal scrolls. We present our Macaulay2-package which computes the relative canonical resolution associated to a curve and a pencil of divisors. Most of our experimental data can be found on a dedicated webpage. We end with a list of conjectural shapes of relative canonical resolutions. In particular, for curves of genus $g=n\cdot k +1$ and pencils of degree $k$ for $n\ge 1$, we conjecture that the syzygy divisors on the Hurwitz space $\mathscr{H}_{g,k}$ constructed by Deopurkar and Patel all have the same support.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.