Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Polya-Szego inequality and Dirichlet $p$-spectral gap for non-smooth spaces with Ricci curvature bounded below (1807.04453v2)

Published 12 Jul 2018 in math.FA, math.DG, math.MG, and math.SP

Abstract: We study decreasing rearrangements of functions defined on (possibly non-smooth) metric measure spaces with Ricci curvature bounded below by $K>0$ and dimension bounded above by $N\in (1,\infty)$ in a synthetic sense, the so called $CD(K,N)$ spaces. We first establish a Polya-Szego type inequality stating that the $W{1,p}$-Sobolev norm decreases under such a rearrangement and apply the result to show sharp spectral gap for the $p$-Laplace operator with Dirichlet boundary conditions (on open subsets), for every $p\in (1,\infty)$. This extends to the non-smooth setting a classical result of B\'erard-Meyer and Matei; remarkable examples of spaces fitting out framework and for which the results seem new include: measured-Gromov Hausdorff limits of Riemannian manifolds with Ricci$\geq K>0$, finite dimensional Alexandrov spaces with curvature$\geq K>0$, Finsler manifolds with Ricci$\geq K>0$. In the second part of the paper we prove new rigidity and almost rigidity results attached to the aforementioned inequalities, in the framework of $RCD(K,N)$ spaces, which seem original even for smooth Riemannian manifolds with Ricci$\geq K>0$.

Summary

We haven't generated a summary for this paper yet.