Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On reproducing kernels, and analysis of measures (1807.04111v3)

Published 11 Jul 2018 in math.FA and math.PR

Abstract: Starting with the correspondence between positive definite kernels on the one hand and reproducing kernel Hilbert spaces (RKHSs) on the other, we turn to a detailed analysis of associated measures and Gaussian processes. Point of departure: Every positive definite kernel is also the covariance kernel of a Gaussian process. Given a fixed sigma-finite measure $\mu$, we consider positive definite kernels defined on the subset of the sigma algebra having finite $\mu$ measure. We show that then the corresponding Hilbert factorizations consist of signed measures, finitely additive, but not automatically sigma-additive. We give a necessary and sufficient condition for when the measures in the RKHS, and the Hilbert factorizations, are sigma-additive. Our emphasis is the case when $\mu$ is assumed non-atomic. By contrast, when $\mu$ is known to be atomic, our setting is shown to generalize that of Shannon-interpolation. Our RKHS-approach further leads to new insight into the associated Gaussian processes, their It^{o} calculus and diffusion. Examples include fractional Brownian motion, and time-change processes.

Summary

We haven't generated a summary for this paper yet.