Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

RTF-Based Binaural MVDR Beamformer Exploiting an External Microphone in a Diffuse Noise Field (1807.04096v2)

Published 11 Jul 2018 in eess.AS

Abstract: Besides suppressing all undesired sound sources, an important objective of a binaural noise reduction algorithm for hearing devices is the preservation of the binaural cues, aiming at preserving the spatial perception of the acoustic scene. A well-known binaural noise reduction algorithm is the binaural minimum variance distortionless response beamformer, which can be steered using the relative transfer function (RTF) vector of the desired source, relating the acoustic transfer functions between the desired source and all microphones to a reference microphone. In this paper, we propose a computationally efficient method to estimate the RTF vector in a diffuse noise field, requiring an additional microphone that is spatially separated from the head-mounted microphones. Assuming that the spatial coherence between the noise components in the head-mounted microphone signals and the additional microphone signal is zero, we show that an unbiased estimate of the RTF vector can be obtained. Based on real-world recordings, experimental results for several reverberation times show that the proposed RTF estimator outperforms the widely used RTF estimator based on covariance whitening and a simple biased RTF estimator in terms of noise reduction and binaural cue preservation performance.

Citations (9)

Summary

We haven't generated a summary for this paper yet.