Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cohomology of Quotients in Real Symplectic Geometry (1807.03875v1)

Published 10 Jul 2018 in math.SG

Abstract: Given a Hamiltonian system $ (M,\omega, G,\mu) $ where $(M,\omega)$ is a symplectic manifold, $G$ is a compact connected Lie group acting on $(M,\omega)$ with moment map $ \mu:M \rightarrow\mathfrak{g}{*}$, then one may construct the symplectic quotient $(M//G, \omega_{red})$ where $M//G := \mu{-1}(0)/G$. Kirwan used the norm-square of the moment map, $|\mu|2$, as a G-equivariant Morse function on $M$ to derive formulas for the rational Betti numbers of $M//G$. A real Hamiltonian system $(M,\omega, G,\mu, \sigma, \phi) $ is a Hamiltonian system along with a pair of involutions $(\sigma:M \rightarrow M, \phi:G \rightarrow G) $ satisfying certain compatibility conditions. These imply that the fixed point set $M{\sigma}$ is a Lagrangian submanifold of $(M,\omega)$ and that $M{\sigma}//G{\phi} := (\mu{-1}(0) \cap M{\sigma})/G{\phi}$ is a Lagrangian submanifold of $(M//G, \omega_{red})$. In this paper we prove analogues of Kirwan's Theorems that can be used to calculate the $\mathbb{Z}_2$-Betti numbers of $M{\sigma}//G{\phi} $. In particular, we prove (under appropriate hypotheses) that $|\mu|2$ restricts to a $G{\phi}$-equivariantly perfect Morse-Kirwan function on $M{\sigma}$ over $\mathbb{Z}_2$ coefficients, describe its critical set using explicit real Hamiltonian subsystems, prove equivariant formality for $G{\phi}$ acting on $M{\sigma}$, and combine these results to produce formulas for the $\mathbb{Z}_2$-Betti numbers of $M{\sigma}//G{\phi}$.

Citations (4)

Summary

We haven't generated a summary for this paper yet.