Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 34 tok/s
GPT-5 High 36 tok/s Pro
GPT-4o 84 tok/s
GPT OSS 120B 463 tok/s Pro
Kimi K2 191 tok/s Pro
2000 character limit reached

Towards Head Motion Compensation Using Multi-Scale Convolutional Neural Networks (1807.03651v1)

Published 10 Jul 2018 in cs.CV

Abstract: Head pose estimation and tracking is useful in variety of medical applications. With the advent of RGBD cameras like Kinect, it has become feasible to do markerless tracking by estimating the head pose directly from the point clouds. One specific medical application is robot assisted transcranial magnetic stimulation (TMS) where any patient motion is compensated with the help of a robot. For increased patient comfort, it is important to track the head without markers. In this regard, we address the head pose estimation problem using two different approaches. In the first approach, we build upon the more traditional approach of model based head tracking, where a head model is morphed according to the particular head to be tracked and the morphed model is used to track the head in the point cloud streams. In the second approach, we propose a new multi-scale convolutional neural network architecture for more accurate pose regression. Additionally, we outline a systematic data set acquisition strategy using a head phantom mounted on the robot and ground-truth labels generated using a highly accurate tracking system.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube