Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
o3 Pro
5 tokens/sec
GPT-4.1 Pro
15 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
Gemini 2.5 Flash Deprecated
12 tokens/sec
2000 character limit reached

An Empirical Approach For Probing the Definiteness of Kernels (1807.03555v1)

Published 10 Jul 2018 in cs.LG and stat.ML

Abstract: Models like support vector machines or Gaussian process regression often require positive semi-definite kernels. These kernels may be based on distance functions. While definiteness is proven for common distances and kernels, a proof for a new kernel may require too much time and effort for users who simply aim at practical usage. Furthermore, designing definite distances or kernels may be equally intricate. Finally, models can be enabled to use indefinite kernels. This may deteriorate the accuracy or computational cost of the model. Hence, an efficient method to determine definiteness is required. We propose an empirical approach. We show that sampling as well as optimization with an evolutionary algorithm may be employed to determine definiteness. We provide a proof-of-concept with 16 different distance measures for permutations. Our approach allows to disprove definiteness if a respective counter-example is found. It can also provide an estimate of how likely it is to obtain indefinite kernel matrices. This provides a simple, efficient tool to decide whether additional effort should be spent on designing/selecting a more suitable kernel or algorithm.

Summary

We haven't generated a summary for this paper yet.