Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Adaptive Learning Method of Deep Belief Network by Layer Generation Algorithm (1807.03486v2)

Published 10 Jul 2018 in cs.NE and cs.CV

Abstract: Deep Belief Network (DBN) has a deep architecture that represents multiple features of input patterns hierarchically with the pre-trained Restricted Boltzmann Machines (RBM). A traditional RBM or DBN model cannot change its network structure during the learning phase. Our proposed adaptive learning method can discover the optimal number of hidden neurons and weights and/or layers according to the input space. The model is an important method to take account of the computational cost and the model stability. The regularities to hold the sparse structure of network is considerable problem, since the extraction of explicit knowledge from the trained network should be required. In our previous research, we have developed the hybrid method of adaptive structural learning method of RBM and Learning Forgetting method to the trained RBM. In this paper, we propose the adaptive learning method of DBN that can determine the optimal number of layers during the learning. We evaluated our proposed model on some benchmark data sets.

Citations (29)

Summary

We haven't generated a summary for this paper yet.