Growth of quantum 6j-symbols and applications to the Volume Conjecture
Abstract: We prove the Turaev-Viro invariants volume conjecture for a "universal" class of cusped hyperbolic 3-manifolds that produces all 3-manifolds with empty or toroidal boundary by Dehn filling. This leads to two-sided bounds on the volume of any hyperbolic 3-manifold with empty or toroidal boundary in terms of the growth rate of the Turaev-Viro invariants of the complement of an appropriate link contained in the manifold. We also provide evidence for a conjecture of Andersen, Masbaum and Ueno (AMU conjecture) about certain quantum representations of surface mapping class groups. A key step in our proofs is finding a sharp upper bound on the growth rate of the quantum $6j-$symbol evaluated at $q=e{\frac{2\pi i}{r}}.$
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.