Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Learning Based Sphere Decoding (1807.03162v2)

Published 6 Jul 2018 in eess.SP and cs.LG

Abstract: In this paper, a deep learning (DL)-based sphere decoding algorithm is proposed, where the radius of the decoding hypersphere is learned by a deep neural network (DNN). The performance achieved by the proposed algorithm is very close to the optimal maximum likelihood decoding (MLD) over a wide range of signal-to-noise ratios (SNRs), while the computational complexity, compared to existing sphere decoding variants, is significantly reduced. This improvement is attributed to DNN's ability of intelligently learning the radius of the hypersphere used in decoding. The expected complexity of the proposed DL-based algorithm is analytically derived and compared with existing ones. It is shown that the number of lattice points inside the decoding hypersphere drastically reduces in the DL-based algorithm in both the average and worst-case senses. The effectiveness of the proposed algorithm is shown through simulation for high-dimensional multiple-input multiple-output (MIMO) systems, using high-order modulations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. J. Jalden and P. Elia, “Sphere decoding complexity exponent for decoding full-rate codes over the quasi-static MIMO channel,” IEEE Trans. Inf. Theory, vol. 58, no. 9, pp. 5785–5803, Sep. 2012.
  2. J. Mietzner, R. Schober, L. Lampe, W. H. Gerstacker, and P. A. Hoeher, “Multiple-antenna techniques for wireless communications-a comprehensive literature survey,” IEEE Commun. Surveys Tuts., vol. 11, no. 2, Sencond quarter 2009.
  3. B. Hassibi and H. Vikalo, “On the sphere-decoding algorithm I. expected complexity,” IEEE Trans. Signal Process., vol. 53, no. 8, pp. 2806–2818, Aug. 2005.
  4. B. Hassibi, “An efficient square-root algorithm for BLAST,” in Proc. ICASSP, vol. 2.   IEEE, Aug. 2000, pp. 737–740.
  5. E. Viterbo and J. Boutros, “A universal lattice code decoder for fading channels,” IEEE Trans. Inf. Theory, vol. 45, no. 5, pp. 1639–1642, Jul. 1999.
  6. F. Zhao and S. Qiao, “Radius selection algorithms for sphere decoding,” in in Proc. CSSE, Montreal, Canada, May 2009, pp. 169–174.
  7. B. M. Hochwald and S. Ten Brink, “Achieving near-capacity on a multiple-antenna channel,” IEEE Trans. Commun., vol. 51, no. 3, pp. 389–399, 2003.
  8. E. Agrell, T. Eriksson, A. Vardy, and K. Zeger, “Closest point search in lattices,” IEEE Trans. Inf. Theory, vol. 48, no. 8, pp. 2201–2214, Aug. 2002.
  9. A. M. Chan and I. Lee, “A new reduced-complexity sphere decoder for multiple antenna systems,” in proc. ICC, New York, USA, Apr. 2002, pp. 460–464.
  10. L. G. Barbero and J. S. Thompson, “Fixing the complexity of the sphere decoder for MIMO detection,” IEEE Trans. Wireless Commun., vol. 7, no. 6, Jun. 2008.
  11. B. Shim and I. Kang, “Sphere decoding with a probabilistic tree pruning,” IEEE Trans. Signal Process., vol. 56, no. 10, pp. 4867–4878, Oct. 2008.
  12. R. Gowaikar and B. Hassibi, “Statistical pruning for near-maximum likelihood decoding,” IEEE Trans. Signal Process., vol. 55, no. 6, pp. 2661–2675, May 2007.
  13. B. Shim and I. Kang, “Radius-adaptive sphere decoding via probabilistic tree pruning,” in proc. SPAWC, Helsinki, Finland, Jun. 2007, pp. 1–5.
  14. X.-W. Chang, J. Wen, and X. Xie, “Effects of the LLL reduction on the success probability of the babai point and on the complexity of sphere decoding,” IEEE Trans. Inf. Theory, vol. 59, no. 8, pp. 4915–4926, Jun. 2013.
  15. W. Zhao and G. B. Giannakis, “Sphere decoding algorithms with improved radius search,” IEEE Trans. Commun., vol. 53, no. 7, pp. 1104–1109, Jul. 2005.
  16. H. Vikalo, B. Hassibi, and T. Kailath, “Iterative decoding for MIMO channels via modified sphere decoding,” IEEE Trans. Wireless Commun., vol. 3, no. 6, pp. 2299–2311, Nov. 2004.
  17. Z. Yang, C. Liu, and J. He, “A new approach for fast generalized sphere decoding in MIMO systems,” IEEE Signal Process. Lett., vol. 12, no. 1, pp. 41–44, Jan. 2005.
  18. Q. Wang and Y. Jing, “Performance analysis and scaling law of MRC/MRT relaying with CSI error in multi-pair massive MIMO systems,” IEEE Trans. Wireless Commun., vol. 16, no. 9, pp. 5882–5896, Sep. 2017.
  19. K. Mahdaviani, M. Ardakani, and C. Tellambura, “On raptor code design for inactivation decoding,” IEEE Trans. Commun., vol. 60, no. 9, pp. 2377–2381, Sep. 2012.
  20. S. Sun and Y. Jing, “Training and decodings for cooperative network with multiple relays and receive antennas,” IEEE Trans. Commun., vol. 60, no. 6, pp. 1534–1544, Jun. 2012.
  21. H. Ye, G. Y. Li, and B.-H. Juang, “Power of deep learning for channel estimation and signal detection in OFDM systems,” IEEE Wireless Communications Letters, vol. 7, no. 1, pp. 114–117, Feb. 2018.
  22. E. Nachmani, E. Marciano, L. Lugosch, W. J. Gross, D. Burshtein, and Y. Be’ery, “Deep learning methods for improved decoding of linear codes,” IEEE J. Sel. Areas Commun., vol. 12, no. 1, pp. 119–131, Feb. 2018.
  23. N. Farsad and A. Goldsmith, “Detection algorithms for communication systems using deep learning,” arXiv preprint arXiv:1705.08044, 2017.
  24. M. Kim, N.-I. Kim, W. Lee, and D.-H. Cho, “Deep learning aided SCMA,” IEEE Commun. Lett., vol. 22, no. 7, pp. 720–723, Apr. 2018.
  25. T. Wang, C.-K. Wen, H. Wang, F. Gao, T. Jiang, and S. Jin, “Deep learning for wireless physical layer: Opportunities and challenges,” China Communications, vol. 14, no. 11, pp. 92–111, Oct. 2017.
  26. N. Samuel, T. Diskin, and A. Wiesel, “Deep MIMO detection,” in proc. SPAWC, July. 2017, pp. 1–5.
  27. ——, “Learning to detect,” IEEE Trans. Signal Process., vol. 67, no. 10, pp. 2554–2564, May. 2019.
  28. T. J. O’Shea, T. Erpek, and T. C. Clancy, “Deep learning based MIMO communications,” arXiv preprint arXiv:1707.07980, 2017.
  29. H. He, C.-K. Wen, S. Jin, and G. Y. Li, “A model-driven deep learning network for MIMO detection,” arXiv preprint arXiv:1809.09336, 2018.
  30. T. O’Shea and J. Hoydis, “An introduction to deep learning for the physical layer,” IEEE Trans. on Cogn. Commun. Netw., vol. 3, no. 4, pp. 563–575, Dec. 2017.
  31. S. Dörner, S. Cammerer, J. Hoydis, and S. ten Brink, “Deep learning based communication over the air,” IEEE J. Sel. Topics Signal Process., vol. 12, no. 1, pp. 132–143, Feb. 2018.
  32. A. Felix, S. Cammerer, S. Dörner, J. Hoydis, and S. Ten Brink, “OFDM-Autoencoder for end-to-end learning of communications systems,” in proc. SPAWC, July 2018, pp. 1–5.
  33. F. A. Aoudia and J. Hoydis, “End-to-End learning of communications systems without a channel model,” in proc. ACSSC, Oct. 2018, pp. 1–5.
  34. G. Gybenko, “Approximation by superposition of sigmoidal functions,” Mathematics of Control, Signals and Systems, vol. 2, no. 4, pp. 303–314, 1989.
  35. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.
  36. “A visual proof that neural nets can compute any function,” http://neuralnetworksanddeeplearning.com/chap4.html, accessed: 2010-09-30.
  37. H. Vikalo and B. Hassibi, “On the sphere-decoding algorithm II. generalizations, second-order statistics, and applications to communications,” IEEE Trans. Signal Process., vol. 53, no. 8, pp. 2819–2834, Aug. 2005.
Citations (74)

Summary

We haven't generated a summary for this paper yet.