Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quiver Theories and Formulae for Slodowy Slices of Classical Algebras (1807.02521v3)

Published 6 Jul 2018 in hep-th

Abstract: We utilise SUSY quiver gauge theories to compute properties of Slodowy slices; these are spaces transverse to the nilpotent orbits of a Lie algebra $\mathfrak g$. We analyse classes of quiver theories, with Classical gauge and flavour groups, whose Higgs branch Hilbert series are the intersections between Slodowy slices and the nilpotent cone $\mathcal S\cap \mathcal N$ of $\mathfrak{g}$. We calculate refined Hilbert series for Classical algebras up to rank $4$ (and $A_5$), and find descriptions of their representation matrix generators as algebraic varieties encoding the relations of the chiral ring. We also analyse a class of dual quiver theories, whose Coulomb branches are intersections $\mathcal S\cap \mathcal N$; such dual quiver theories exist for the Slodowy slices of $A$ algebras, but are limited to a subset of the Slodowy slices of $BCD$ algebras. The analysis opens new questions about the extent of $3d$ mirror symmetry within the class of SCFTs known as $T_\sigma\rho(G)$ theories. We also give simple group theoretic formulae for the Hilbert series of Slodowy slices; these draw directly on the $SU(2)$ embedding into $G$ of the associated nilpotent orbit, and the Hilbert series of the nilpotent cone.

Citations (14)

Summary

We haven't generated a summary for this paper yet.