Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Natural Language Processing for Information Extraction (1807.02383v1)

Published 6 Jul 2018 in cs.CL and cs.AI

Abstract: With rise of digital age, there is an explosion of information in the form of news, articles, social media, and so on. Much of this data lies in unstructured form and manually managing and effectively making use of it is tedious, boring and labor intensive. This explosion of information and need for more sophisticated and efficient information handling tools gives rise to Information Extraction(IE) and Information Retrieval(IR) technology. Information Extraction systems takes natural language text as input and produces structured information specified by certain criteria, that is relevant to a particular application. Various sub-tasks of IE such as Named Entity Recognition, Coreference Resolution, Named Entity Linking, Relation Extraction, Knowledge Base reasoning forms the building blocks of various high end NLP tasks such as Machine Translation, Question-Answering System, Natural Language Understanding, Text Summarization and Digital Assistants like Siri, Cortana and Google Now. This paper introduces Information Extraction technology, its various sub-tasks, highlights state-of-the-art research in various IE subtasks, current challenges and future research directions.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Sonit Singh (9 papers)
Citations (54)

Summary

We haven't generated a summary for this paper yet.