Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Linear Bandits with Stochastic Delayed Feedback (1807.02089v3)

Published 5 Jul 2018 in stat.ML and cs.LG

Abstract: Stochastic linear bandits are a natural and well-studied model for structured exploration/exploitation problems and are widely used in applications such as online marketing and recommendation. One of the main challenges faced by practitioners hoping to apply existing algorithms is that usually the feedback is randomly delayed and delays are only partially observable. For example, while a purchase is usually observable some time after the display, the decision of not buying is never explicitly sent to the system. In other words, the learner only observes delayed positive events. We formalize this problem as a novel stochastic delayed linear bandit and propose ${\tt OTFLinUCB}$ and ${\tt OTFLinTS}$, two computationally efficient algorithms able to integrate new information as it becomes available and to deal with the permanently censored feedback. We prove optimal $\tilde O(\smash{d\sqrt{T}})$ bounds on the regret of the first algorithm and study the dependency on delay-dependent parameters. Our model, assumptions and results are validated by experiments on simulated and real data.

Citations (62)

Summary

We haven't generated a summary for this paper yet.