Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Decoupled Data Based Approach to Stochastic Optimal Control Problems (1807.01164v2)

Published 1 Jul 2018 in cs.SY and math.OC

Abstract: This paper studies the stochastic optimal control problem for systems with unknown dynamics. A novel decoupled data based control (D2C) approach is proposed, which solves the problem in a decoupled "open loop-closed loop" fashion that is shown to be near-optimal. First, an open-loop deterministic trajectory optimization problem is solved using a black-box simulation model of the dynamical system using a standard nonlinear programming (NLP) solver. Then a Linear Quadratic Regulator (LQR) controller is designed for the nominal trajectory-dependent linearized system which is learned using input-output experimental data. Computational examples are used to illustrate the performance of the proposed approach with three benchmark problems.

Summary

We haven't generated a summary for this paper yet.