2000 character limit reached
Third Double-layer Potential for generalized bi-axially symmetric Helmholtz equation (1807.00903v1)
Published 2 Jul 2018 in math.AP
Abstract: The double-layer potential plays an important role in solving boundary value problems for elliptic equations, and in the study of which for a certain equation, the properties of the fundamental solutions of the given equation are used. All the fundamental solutions of the generalized bi-axially symmetric Helmholtz equation were known, and only for the first one was constructed the theory of potential. Here, in this paper, we aim at constructing theory of double-layer potentials corresponding to the third fundamental solution. By using some properties of one of Appell's hypergeometric functions in two variables, we prove limiting theorems and derive integral equations concerning a denseness of double-layer potentials.