Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The risk function of the goodness-of-fit tests for tail models (1807.00810v1)

Published 1 Jul 2018 in stat.ME

Abstract: This paper contributes to answering a question that is of crucial importance in risk management and extreme value theory: How to select the threshold above which one assumes that the tail of a distribution follows a generalized Pareto distribution. This question has gained increasing attention, particularly in finance institutions, as the recent regulative norms require the assessment of risk at high quantiles. Recent methods answer this question by multiple uses of the standard goodness-of-fit tests. These tests are based on a particular choice of symmetric weighting of the mean square error between the empirical and the fitted tail distributions. Assuming an asymmetric weighting, which rates high quantiles more than small ones, we propose new goodness-of-fit tests and automated threshold selection procedures. We consider a parameterized family of asymmetric weight functions and calculate the corresponding mean square error as a loss function. We then explicitly determine the risk function as the finite sample expected value of the loss function. Finally, the risk function can be used to discuss the question of which symmetric or asymmetric weight function and, thus, which goodness-of-fit test should be used in a new method for determining the threshold value.

Summary

We haven't generated a summary for this paper yet.