Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rapid covariance-based sampling of linear SPDE approximations in the multilevel Monte Carlo method (1806.11523v3)

Published 29 Jun 2018 in math.PR, cs.NA, and math.NA

Abstract: The efficient simulation of the mean value of a non-linear functional of the solution to a linear stochastic partial differential equation (SPDE) with additive Gaussian noise is considered. A Galerkin finite element method is employed along with an implicit Euler scheme to arrive at a fully discrete approximation of the mild solution to the equation. A scheme is presented to compute the covariance of this approximation, which allows for rapid sampling in a Monte Carlo method. This is then extended to a multilevel Monte Carlo method, for which a scheme to compute the cross-covariance between the approximations at different levels is presented. In contrast to traditional path-based methods it is not assumed that the Galerkin subspaces at these levels are nested. The computational complexities of the presented schemes are compared to traditional methods and simulations confirm that, under suitable assumptions, the costs of the new schemes are significantly lower.

Citations (5)

Summary

We haven't generated a summary for this paper yet.