Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
Gemini 2.5 Pro
GPT-5
GPT-4o
DeepSeek R1 via Azure
2000 character limit reached

The decoupled extended Kalman filter for dynamic exponential-family factorization models (1806.09976v2)

Published 26 Jun 2018 in stat.ML and cs.LG

Abstract: Motivated by the needs of online large-scale recommender systems, we specialize the decoupled extended Kalman filter (DEKF) to factorization models, including factorization machines, matrix and tensor factorization, and illustrate the effectiveness of the approach through numerical experiments on synthetic and on real-world data. Online learning of model parameters through the DEKF makes factorization models more broadly useful by (i) allowing for more flexible observations through the entire exponential family, (ii) modeling parameter drift, and (iii) producing parameter uncertainty estimates that can enable explore/exploit and other applications. We use a different parameter dynamics than the standard DEKF, allowing parameter drift while encouraging reasonable values. We also present an alternate derivation of the extended Kalman filter and DEKF that highlights the role of the Fisher information matrix in the EKF.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube