2000 character limit reached
On the Circumference of Essentially 4-connected Planar Graphs (1806.09413v3)
Published 25 Jun 2018 in math.CO and cs.DM
Abstract: A planar graph is essentially $4$-connected if it is 3-connected and every of its 3-separators is the neighborhood of a single vertex. Jackson and Wormald proved that every essentially 4-connected planar graph $G$ on $n$ vertices contains a cycle of length at least $\frac{2n+4}{5}$, and this result has recently been improved multiple times. In this paper, we prove that every essentially 4-connected planar graph $G$ on $n$ vertices contains a cycle of length at least $\frac{5}{8}(n+2)$. This improves the previously best-known lower bound $\frac{3}{5}(n+2)$.