Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Traffic Flow Dynamics using Random Fields (1806.08764v2)

Published 22 Jun 2018 in stat.ML and cs.LG

Abstract: This paper presents a mesoscopic traffic flow model that explicitly describes the spatio-temporal evolution of the probability distributions of vehicle trajectories. The dynamics are represented by a sequence of factor graphs, which enable learning of traffic dynamics from limited Lagrangian measurements using an efficient message passing technique. The approach ensures that estimated speeds and traffic densities are non-negative with probability one. The estimation technique is tested using vehicle trajectory datasets generated using an independent microscopic traffic simulator and is shown to efficiently reproduce traffic conditions with probe vehicle penetration levels as little as 10\%. The proposed algorithm is also compared with state-of-the-art traffic state estimation techniques developed for the same purpose and it is shown that the proposed approach can outperform the state-of-the-art techniques in terms reconstruction accuracy.

Citations (16)

Summary

We haven't generated a summary for this paper yet.