Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-task WaveNet: A Multi-task Generative Model for Statistical Parametric Speech Synthesis without Fundamental Frequency Conditions (1806.08619v1)

Published 22 Jun 2018 in eess.AS, cs.SD, and eess.SP

Abstract: This paper introduces an improved generative model for statistical parametric speech synthesis (SPSS) based on WaveNet under a multi-task learning framework. Different from the original WaveNet model, the proposed Multi-task WaveNet employs the frame-level acoustic feature prediction as the secondary task and the external fundamental frequency prediction model for the original WaveNet can be removed. Therefore the improved WaveNet can generate high-quality speech waveforms only conditioned on linguistic features. Multi-task WaveNet can produce more natural and expressive speech by addressing the pitch prediction error accumulation issue and possesses more succinct inference procedures than the original WaveNet. Experimental results prove that the SPSS method proposed in this paper can achieve better performance than the state-of-the-art approach utilizing the original WaveNet in both objective and subjective preference tests.

Citations (17)

Summary

We haven't generated a summary for this paper yet.