Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Novel Selectivity Estimation Strategy for Modern DBMS (1806.08384v1)

Published 21 Jun 2018 in cs.DB

Abstract: Selectivity estimation is important in query optimization, however accurate estimation is difficult when predicates are complex. Instead of existing database synopses and statistics not helpful for such cases, we introduce a new approach to compute the exact selectivity by running an aggregate query during the optimization phase. Exact selectivity can be achieved without significant overhead for in-memory and GPU-accelerated databases by adding extra query execution calls. We implement a selection push-down extension based on the novel selectivity estimation strategy in the MapD database system. Our approach records constant and less than 30 millisecond overheads in any circumstances while running on GPU. The novel strategy successfully generates better query execution plans which result in performance improvement up to 4.8 times from TPC-H benchmark SF-50 queries and 7.3 times from star schema benchmark SF-80 queries.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Jun Hyung Shin (3 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.