Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fourier series of Jacobi-Sobolev polynomial (1806.08105v2)

Published 21 Jun 2018 in math.FA

Abstract: Let ${q_n{(\alpha,\beta,m)}(x)}_{n\ge 0}$ be the orthonormal polynomials respect to the Sobolev-type inner product \begin{equation*} \langle f,g\rangle_{\alpha,\beta,m}=\sum_{k=0}m \int_{-1}{1}f{(k)}(x)g{(k)}(x)\, dw_{\alpha+k,\beta+k}(x), \quad \alpha,\beta>-1, \quad m\ge 1, \end{equation*} where $dw_{a,b}(x)=(1-x){a}(1+x)b\, dx$. We obtain necessary and sufficient conditions for the uniform boundedness of the partial sum operators related to this sequence of polynomials in the Sobolev space $W_{\alpha,\beta}{p,m}$. As a consequence we deduce the convergence of such partial sums in the norm of $W_{\alpha,\beta}{p,m}$.

Summary

We haven't generated a summary for this paper yet.