Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dynamic Risk Assessment for Vehicles of Higher Automation Levels by Deep Learning (1806.07635v1)

Published 20 Jun 2018 in cs.CV and cs.AI

Abstract: Vehicles of higher automation levels require the creation of situation awareness. One important aspect of this situation awareness is an understanding of the current risk of a driving situation. In this work, we present a novel approach for the dynamic risk assessment of driving situations based on images of a front stereo camera using deep learning. To this end, we trained a deep neural network with recorded monocular images, disparity maps and a risk metric for diverse traffic scenes. Our approach can be used to create the aforementioned situation awareness of vehicles of higher automation levels and can serve as a heterogeneous channel to systems based on radar or lidar sensors that are used traditionally for the calculation of risk metrics.

Citations (14)

Summary

We haven't generated a summary for this paper yet.