Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Self-adaptive Privacy Concern Detection for User-generated Content (1806.07221v1)

Published 19 Jun 2018 in cs.CR and cs.CL

Abstract: To protect user privacy in data analysis, a state-of-the-art strategy is differential privacy in which scientific noise is injected into the real analysis output. The noise masks individual's sensitive information contained in the dataset. However, determining the amount of noise is a key challenge, since too much noise will destroy data utility while too little noise will increase privacy risk. Though previous research works have designed some mechanisms to protect data privacy in different scenarios, most of the existing studies assume uniform privacy concerns for all individuals. Consequently, putting an equal amount of noise to all individuals leads to insufficient privacy protection for some users, while over-protecting others. To address this issue, we propose a self-adaptive approach for privacy concern detection based on user personality. Our experimental studies demonstrate the effectiveness to address a suitable personalized privacy protection for cold-start users (i.e., without their privacy-concern information in training data).

Citations (10)

Summary

We haven't generated a summary for this paper yet.