Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

FineTag: Multi-attribute Classification at Fine-grained Level in Images (1806.07124v2)

Published 19 Jun 2018 in cs.CV

Abstract: In this paper, we address the extraction of the fine-grained attributes of an instance as a `multi-attribute classification' problem. To this end, we propose an end-to-end architecture by adopting the bi-linear Convolutional Neural Network with the pairwise ranking loss. This is the first time such architecture is applied for the fine-grained attributes classification problem. We compared the proposed method with a competitive deep Convolutional Neural Network baseline. Extensive experiments show that the proposed method attains/outperforms the performance of compared baseline with significantly less number of parameters ($40\times$ less). We demonstrated our approach on CUB200 birds dataset whose annotations are adapted in this work for multi-attribute classification at fine-grained level.

Citations (1)

Summary

We haven't generated a summary for this paper yet.