Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
Gemini 2.5 Pro
GPT-5
GPT-4o
DeepSeek R1 via Azure
2000 character limit reached

Laplacian Smoothing Gradient Descent (1806.06317v5)

Published 17 Jun 2018 in cs.LG, math.NA, and stat.ML

Abstract: We propose a class of very simple modifications of gradient descent and stochastic gradient descent. We show that when applied to a large variety of machine learning problems, ranging from logistic regression to deep neural nets, the proposed surrogates can dramatically reduce the variance, allow to take a larger step size, and improve the generalization accuracy. The methods only involve multiplying the usual (stochastic) gradient by the inverse of a positive definitive matrix (which can be computed efficiently by FFT) with a low condition number coming from a one-dimensional discrete Laplacian or its high order generalizations. It also preserves the mean and increases the smallest component and decreases the largest component. The theory of Hamilton-Jacobi partial differential equations demonstrates that the implicit version of the new algorithm is almost the same as doing gradient descent on a new function which (i) has the same global minima as the original function and (ii) is ``more convex". Moreover, we show that optimization algorithms with these surrogates converge uniformly in the discrete Sobolev $H_\sigmap$ sense and reduce the optimality gap for convex optimization problems. The code is available at: \url{https://github.com/BaoWangMath/LaplacianSmoothing-GradientDescent}

Citations (41)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.