Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scheduled Policy Optimization for Natural Language Communication with Intelligent Agents (1806.06187v2)

Published 16 Jun 2018 in cs.CL

Abstract: We investigate the task of learning to follow natural language instructions by jointly reasoning with visual observations and language inputs. In contrast to existing methods which start with learning from demonstrations (LfD) and then use reinforcement learning (RL) to fine-tune the model parameters, we propose a novel policy optimization algorithm which dynamically schedules demonstration learning and RL. The proposed training paradigm provides efficient exploration and better generalization beyond existing methods. Comparing to existing ensemble models, the best single model based on our proposed method tremendously decreases the execution error by over 50% on a block-world environment. To further illustrate the exploration strategy of our RL algorithm, We also include systematic studies on the evolution of policy entropy during training.

Citations (7)

Summary

We haven't generated a summary for this paper yet.