Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stochastic Gradient Descent with Exponential Convergence Rates of Expected Classification Errors (1806.05438v4)

Published 14 Jun 2018 in stat.ML, cs.LG, and math.OC

Abstract: We consider stochastic gradient descent and its averaging variant for binary classification problems in a reproducing kernel Hilbert space. In the traditional analysis using a consistency property of loss functions, it is known that the expected classification error converges more slowly than the expected risk even when assuming a low-noise condition on the conditional label probabilities. Consequently, the resulting rate is sublinear. Therefore, it is important to consider whether much faster convergence of the expected classification error can be achieved. In recent research, an exponential convergence rate for stochastic gradient descent was shown under a strong low-noise condition but provided theoretical analysis was limited to the squared loss function, which is somewhat inadequate for binary classification tasks. In this paper, we show an exponential convergence of the expected classification error in the final phase of the stochastic gradient descent for a wide class of differentiable convex loss functions under similar assumptions. As for the averaged stochastic gradient descent, we show that the same convergence rate holds from the early phase of training. In experiments, we verify our analyses on the $L_2$-regularized logistic regression.

Citations (10)

Summary

We haven't generated a summary for this paper yet.