Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DRE-Bot: A Hierarchical First Person Shooter Bot Using Multiple Sarsa(λ) Reinforcement Learners (1806.05106v1)

Published 13 Jun 2018 in cs.AI

Abstract: This paper describes an architecture for controlling non-player characters (NPC) in the First Person Shooter (FPS) game Unreal Tournament 2004. Specifically, the DRE-Bot architecture is made up of three reinforcement learners, Danger, Replenish and Explore, which use the tabular Sarsa({\lambda}) algorithm. This algorithm enables the NPC to learn through trial and error building up experience over time in an approach inspired by human learning. Experimentation is carried to measure the performance of DRE-Bot when competing against fixed strategy bots that ship with the game. The discount parameter, {\gamma}, and the trace parameter, {\lambda}, are also varied to see if their values have an effect on the performance.

Citations (8)

Summary

We haven't generated a summary for this paper yet.