2000 character limit reached
Dynamic phase transitions in the presence of quenched randomness (1806.04946v3)
Published 13 Jun 2018 in cond-mat.stat-mech
Abstract: We present an extensive study of the effects of quenched disorder on the dynamic phase transitions of kinetic spin models in two dimensions. We undertake a numerical experiment performing Monte Carlo simulations of the square-lattice random-bond Ising and Blume-Capel models under a periodically oscillating magnetic field. For the case of the Blume-Capel model we analyze the universality principles of the dynamic disordered-induced continuous transition at the low-temperature regime of the phase diagram. A detailed finite-size scaling analysis indicates that both nonequilibrium phase transitions belong to the universality class of the corresponding equilibrium random Ising model.