Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Clinical Parameters Prediction for Gait Disorder Recognition (1806.04627v1)

Published 22 May 2018 in eess.IV and cs.CV

Abstract: Being able to predict clinical parameters in order to diagnose gait disorders in a patient is of great value in planning treatments. It is known that \textit{decision parameters} such as cadence, step length, and walking speed are critical in the diagnosis of gait disorders in patients. This project aims to predict the decision parameters using two ways and afterwards giving advice on whether a patient needs treatment or not. In one way, we use clinically measured parameters such as Ankle Dorsiflexion, age, walking speed, step length, stride length, weight over height squared (BMI) and etc. to predict the decision parameters. In a second way, we use videos recorded from patient's walking tests in a clinic in order to extract the coordinates of the joints of the patient over time and predict the decision parameters. Finally, having the decision parameters we pre-classify gait disorder intensity of a patient and as the result make decisions on whether a patient needs treatment or not.

Citations (4)

Summary

We haven't generated a summary for this paper yet.