Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximate inference with Wasserstein gradient flows (1806.04542v1)

Published 12 Jun 2018 in stat.ML and cs.LG

Abstract: We present a novel approximate inference method for diffusion processes, based on the Wasserstein gradient flow formulation of the diffusion. In this formulation, the time-dependent density of the diffusion is derived as the limit of implicit Euler steps that follow the gradients of a particular free energy functional. Existing methods for computing Wasserstein gradient flows rely on discretization of the domain of the diffusion, prohibiting their application to domains in more than several dimensions. We propose instead a discretization-free inference method that computes the Wasserstein gradient flow directly in a space of continuous functions. We characterize approximation properties of the proposed method and evaluate it on a nonlinear filtering task, finding performance comparable to the state-of-the-art for filtering diffusions.

Citations (32)

Summary

We haven't generated a summary for this paper yet.