Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural Network Models for Paraphrase Identification, Semantic Textual Similarity, Natural Language Inference, and Question Answering (1806.04330v2)

Published 12 Jun 2018 in cs.CL

Abstract: In this paper, we analyze several neural network designs (and their variations) for sentence pair modeling and compare their performance extensively across eight datasets, including paraphrase identification, semantic textual similarity, natural language inference, and question answering tasks. Although most of these models have claimed state-of-the-art performance, the original papers often reported on only one or two selected datasets. We provide a systematic study and show that (i) encoding contextual information by LSTM and inter-sentence interactions are critical, (ii) Tree-LSTM does not help as much as previously claimed but surprisingly improves performance on Twitter datasets, (iii) the Enhanced Sequential Inference Model is the best so far for larger datasets, while the Pairwise Word Interaction Model achieves the best performance when less data is available. We release our implementations as an open-source toolkit.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Wuwei Lan (12 papers)
  2. Wei Xu (536 papers)
Citations (119)

Summary

We haven't generated a summary for this paper yet.