Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sparse, Collaborative, or Nonnegative Representation: Which Helps Pattern Classification? (1806.04329v2)

Published 12 Jun 2018 in cs.CV

Abstract: The use of sparse representation (SR) and collaborative representation (CR) for pattern classification has been widely studied in tasks such as face recognition and object categorization. Despite the success of SR/CR based classifiers, it is still arguable whether it is the $\ell_{1}$-norm sparsity or the $\ell_{2}$-norm collaborative property that brings the success of SR/CR based classification. In this paper, we investigate the use of nonnegative representation (NR) for pattern classification, which is largely ignored by previous work. Our analyses reveal that NR can boost the representation power of homogeneous samples while limiting the representation power of heterogeneous samples, making the representation sparse and discriminative simultaneously and thus providing a more effective solution to representation based classification than SR/CR. Our experiments demonstrate that the proposed NR based classifier (NRC) outperforms previous representation based classifiers. With deep features as inputs, it also achieves state-of-the-art performance on various visual classification tasks.

Citations (117)

Summary

We haven't generated a summary for this paper yet.