Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Two-Dimensional Yang-Mills Theory on Surfaces With Corners in Batalin-Vilkovisky Formalism (1806.04172v3)

Published 11 Jun 2018 in math-ph, hep-th, and math.MP

Abstract: In this paper we recover the non-perturbative partition function of 2D~Yang-Mills theory from the perturbative path integral. To achieve this goal, we study the perturbative path integral quantization for 2D~Yang-Mills theory on surfaces with boundaries and corners in the Batalin-Vilkovisky formalism (or, more precisely, in its adaptation to the setting with boundaries, compatible with gluing and cutting -- the BV-BFV formalism). We prove that cutting a surface (e.g. a closed one) into simple enough pieces -- building blocks -- and choosing a convenient gauge-fixing on the pieces, and assembling back the partition function on the surface, one recovers the known non-perturbative answers for 2D~Yang-Mills theory.

Summary

We haven't generated a summary for this paper yet.