Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
105 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

From nonlocal Eringen's model to fractional elasticity (1806.03906v1)

Published 11 Jun 2018 in math.AP

Abstract: Eringen's model is one of the most popular theories in nonlocal elasticity. It has been applied to many practical situations with the objective of removing the anomalous stress concentrations around geometric shape singularities, which appear when the local modelling is used. Despite the great popularity of Eringen's model in mechanical engineering community, even the most basic questions such as the existence and uniqueness of solutions have been rarely considered in the research literature for this model. In this work we focus on precisely these questions, proving that the model is in general ill-posed in the case of smooth kernels, the case which appears rather often in numerical studies. We also consider the case of singular, non-smooth kernels, and for the paradigmatic case of the Riesz potential we establish the well-posedness of the model in fractional Sobolev spaces. For such a kernel, in dimension one the model reduces to the well-known fractional Laplacian. Finally, we discuss possible extensions of Eringen's model to spatially heterogeneous material distributions.

Summary

We haven't generated a summary for this paper yet.