Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 105 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 45 tok/s
GPT-5 High 34 tok/s Pro
GPT-4o 108 tok/s
GPT OSS 120B 473 tok/s Pro
Kimi K2 218 tok/s Pro
2000 character limit reached

Distributed Evaluations: Ending Neural Point Metrics (1806.03790v1)

Published 11 Jun 2018 in cs.IR

Abstract: With the rise of neural models across the field of information retrieval, numerous publications have incrementally pushed the envelope of performance for a multitude of IR tasks. However, these networks often sample data in random order, are initialized randomly, and their success is determined by a single evaluation score. These issues are aggravated by neural models achieving incremental improvements from previous neural baselines, leading to multiple near state of the art models that are difficult to reproduce and quickly become deprecated. As neural methods are starting to be incorporated into low resource and noisy collections that further exacerbate this issue, we propose evaluating neural models both over multiple random seeds and a set of hyperparameters within $\epsilon$ distance of the chosen configuration for a given metric.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.