Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Covariance-Hessian Relation in Evolution Strategies (1806.03674v2)

Published 10 Jun 2018 in cs.NE and cs.LG

Abstract: We consider Evolution Strategies operating only with isotropic Gaussian mutations on positive quadratic objective functions, and investigate the covariance matrix when constructed out of selected individuals by truncation. We prove that the covariance matrix over $(1,\lambda)$-selected decision vectors becomes proportional to the inverse of the landscape Hessian as the population-size $\lambda$ increases. This generalizes a previous result that proved an equivalent phenomenon when sampling was assumed to take place in the vicinity of the optimum. It further confirms the classical hypothesis that statistical learning of the landscape is an inherent characteristic of standard Evolution Strategies, and that this distinguishing capability stems only from the usage of isotropic Gaussian mutations and rank-based selection. We provide broad numerical validation for the proven results, and present empirical evidence for its generalization to $(\mu,\lambda)$-selection.

Citations (14)

Summary

We haven't generated a summary for this paper yet.