Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Machine Learning CICY Threefolds (1806.03121v3)

Published 8 Jun 2018 in hep-th, hep-ph, math.AG, and stat.ML

Abstract: The latest techniques from Neural Networks and Support Vector Machines (SVM) are used to investigate geometric properties of Complete Intersection Calabi-Yau (CICY) threefolds, a class of manifolds that facilitate string model building. An advanced neural network classifier and SVM are employed to (1) learn Hodge numbers and report a remarkable improvement over previous efforts, (2) query for favourability, and (3) predict discrete symmetries, a highly imbalanced problem to which both Synthetic Minority Oversampling Technique (SMOTE) and permutations of the CICY matrix are used to decrease the class imbalance and improve performance. In each case study, we employ a genetic algorithm to optimise the hyperparameters of the neural network. We demonstrate that our approach provides quick diagnostic tools capable of shortlisting quasi-realistic string models based on compactification over smooth CICYs and further supports the paradigm that classes of problems in algebraic geometry can be machine learned.

Citations (78)

Summary

We haven't generated a summary for this paper yet.