Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CABaRet: Leveraging Recommendation Systems for Mobile Edge Caching (1806.02704v1)

Published 7 Jun 2018 in cs.NI

Abstract: Joint caching and recommendation has been recently proposed for increasing the efficiency of mobile edge caching. While previous works assume collaboration between mobile network operators and content providers (who control the recommendation systems), this might be challenging in today's economic ecosystem, with existing protocols and architectures. In this paper, we propose an approach that enables cache-aware recommendations without requiring a network and content provider collaboration. We leverage information provided publicly by the recommendation system, and build a system that provides cache-friendly and high-quality recommendations. We apply our approach to the YouTube service, and conduct measurements on YouTube video recommendations and experiments with video requests, to evaluate the potential gains in the cache hit ratio. Finally, we analytically study the problem of caching optimization under our approach. Our results show that significant caching gains can be achieved in practice; 8 to 10 times increase in the cache hit ratio from cache-aware recommendations, and an extra 2 times increase from caching optimization.

Citations (26)

Summary

We haven't generated a summary for this paper yet.