Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
Gemini 2.5 Pro Premium
52 tokens/sec
GPT-5 Medium
24 tokens/sec
GPT-5 High Premium
28 tokens/sec
GPT-4o
85 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
478 tokens/sec
Kimi K2 via Groq Premium
221 tokens/sec
2000 character limit reached

Accelerating Greedy Coordinate Descent Methods (1806.02476v1)

Published 7 Jun 2018 in math.OC

Abstract: We study ways to accelerate greedy coordinate descent in theory and in practice, where "accelerate" refers either to $O(1/k2)$ convergence in theory, in practice, or both. We introduce and study two algorithms: Accelerated Semi-Greedy Coordinate Descent (ASCD) and Accelerated Greedy Coordinate Descent (AGCD). While ASCD takes greedy steps in the $x$-updates and randomized steps in the $z$-updates, AGCD is a straightforward extension of standard greedy coordinate descent that only takes greedy steps. On the theory side, our main results are for ASCD: we show that ASCD achieves $O(1/k2)$ convergence, and it also achieves accelerated linear convergence for strongly convex functions. On the empirical side, we observe that both AGCD and ASCD outperform Accelerated Randomized Coordinate Descent on a variety of instances. In particular, we note that AGCD significantly outperforms the other accelerated coordinate descent methods in numerical tests, in spite of a lack of theoretical guarantees for this method. To complement the empirical study of AGCD, we present a Lyapunov energy function argument that points to an explanation for why a direct extension of the acceleration proof for AGCD does not work; and we also introduce a technical condition under which AGCD is guaranteed to have accelerated convergence. Last of all, we confirm that this technical condition holds in our empirical study.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.