Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adversarial Auto-encoders for Speech Based Emotion Recognition (1806.02146v1)

Published 6 Jun 2018 in stat.ML and cs.LG

Abstract: Recently, generative adversarial networks and adversarial autoencoders have gained a lot of attention in machine learning community due to their exceptional performance in tasks such as digit classification and face recognition. They map the autoencoder's bottleneck layer output (termed as code vectors) to different noise Probability Distribution Functions (PDFs), that can be further regularized to cluster based on class information. In addition, they also allow a generation of synthetic samples by sampling the code vectors from the mapped PDFs. Inspired by these properties, we investigate the application of adversarial autoencoders to the domain of emotion recognition. Specifically, we conduct experiments on the following two aspects: (i) their ability to encode high dimensional feature vector representations for emotional utterances into a compressed space (with a minimal loss of emotion class discriminability in the compressed space), and (ii) their ability to regenerate synthetic samples in the original feature space, to be later used for purposes such as training emotion recognition classifiers. We demonstrate the promise of adversarial autoencoders with regards to these aspects on the Interactive Emotional Dyadic Motion Capture (IEMOCAP) corpus and present our analysis.

Citations (67)

Summary

We haven't generated a summary for this paper yet.