Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Regularity of binomial edge ideals of Cohen-Macaulay bipartite graphs (1806.02109v2)

Published 6 Jun 2018 in math.AC

Abstract: Let $G$ be a finite simple graph on $n$ vertices and $J_G$ denote the corresponding binomial edge ideal in $S = K[x_1, \ldots, x_n, y_1, \ldots, y_n].$ In this article, we prove that if $G$ is a fan graph of a complete graph, then $reg(S/J_G) \leq c(G)$, where $c(G)$ denote the number of maximal cliques in $G$. Further, we show that if $G$ is a $k$-pure fan graph, then $reg(S/J_G) = k+1$. We then compute a precise expression for the regularity of Cohen-Macaulay bipartite graphs.

Summary

We haven't generated a summary for this paper yet.