Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Cohort Intelligence Algorithm: An Intra- and Inter-group Learning Behavior based Socio-inspired Optimization Methodology (1806.01681v1)

Published 1 May 2018 in cs.NE

Abstract: A Multi-Cohort Intelligence (Multi-CI) metaheuristic algorithm in emerging socio-inspired optimization domain is proposed. The algorithm implements intra-group and inter-group learning mechanisms. It focusses on the interaction amongst different cohorts. The performance of the algorithm is validated by solving 75 unconstrained test problems with dimensions up to 30. The solutions were comparing with several recent algorithms such as Particle Swarm Optimization, Covariance Matrix Adaptation Evolution Strategy, Artificial Bee Colony, Self-adaptive differential evolution algorithm, Comprehensive Learning Particle Swarm Optimization, Backtracking Search Optimization Algorithm and Ideology Algorithm. The Wilcoxon signed rank test was carried out for the statistical analysis and verification of the performance. The proposed Multi-CI outperformed these algorithms in terms of the solution quality including objective function value and computational cost, i.e. computational time and functional evaluations. The prominent feature of the Multi-CI algorithm along with the limitations are discussed as well. In addition, an illustrative example is also solved and every detail is provided.

Citations (27)

Summary

We haven't generated a summary for this paper yet.