A Feynman-Kac type formula for a fixed delay CIR model (1806.00997v1)
Abstract: Stochastic delay differential equations (SDDE's) have been used for financial modeling. In this article, we study a SDDE obtained by the equation of a CIR process, with an additional fixed delay term in drift; in particular, we prove that there exists a unique strong solution (positive and integrable) which we call fixed delay CIR process. Moreover, for the fixed delay CIR process, we derive a Feynman-Kac type formula, leading to a generalized exponential-affine formula, which is used to determine a bond pricing formula when the interest rate follows the delay's equation. It turns out that, for each maturity time T, the instantaneous forward rate is an affine function (with time dependent coefficients) of the rate process and of an auxiliary process (also depending on T). The coefficients satisfy a system of deterministic delay differential equations.
Collections
Sign up for free to add this paper to one or more collections.